Perioperative Use of Bevacizumab in Vitrectomy for Proliferative Diabetic Retinopathy: A Literature review

Khalil Ghasemi Falavarjani, MD¹ • Mehdi Modarres, MD²

Abstract

Purpose: To review the effectiveness and safety of perioperative injection of bevacizumab in vitrectomy for proliferative diabetic retinopathy (PDR)

Methods: A literature search of all English articles from the Medline and Scopus databases was performed. Original articles, case reports and letters were included.

Results: Nineteen, 3 and 5 studies reported preoperative, intraoperative and postoperative intravitreal injection of bevacizumab, respectively. There are good evidences that preoperative injection of bevacizumab induces the regression of new vessels, facilitates the surgery and may reduce the incidence of postoperative vitreous hemorrhage in selected eyes. Also, it may decrease the vitreous clear up time for postoperative vitreous hemorrhage. However, the risk of development or progression of tractional retinal detachment (TRD) should be considered. Postoperative complications like the neovascular glaucoma and nonclearing vitreous hemorrhage may be properly managed by intraocular bevacizumab injection.

Conclusion: Preoperative intravitreal bevacizumab (IVB) seems to be effective and relatively safe for surgical facility with variable effects on postoperative hemorrhage. Postoperative intravitreal injection may be effective for the treatment of postoperative complications.

Keywords: Anti-Vascular Endothelial Growth Factor, Bevacizumab, Avastin, Proliferative Diabetic Retinopathy, Vitrectomy

Introduction
Vitreoretinal surgery for advanced proliferative diabetic retinopathy (PDR) is often complicated by hemorrhage from fibrovascular tissue. Massive intraoperative hemorrhage before proper release of the traction is a major cause of surgical failure. Despite appropriate maneuvers for control of hemorrhage, in some cases, repeated bleeding from multiple sites may make the operation lengthy and tedious.\(^1,2\) Also, postvitrectomy complications like macular edema, vitreous hemorrhage and neovascular glaucoma may compromise the surgical results.\(^3\)

Bevacizumab (Avastin, Genentech, Inc., South San Francisco, CA), is a monoclonal antibody that binds to all VEGF isoforms. It has been approved for the treatment of colorectal cancer by Food and Drug Administration (FDA), but not for intraocular injection.\(^4,5\) Nevertheless, its "off label" intraocular injection has been widely used for the treatment of different ocular diseases associated with neovascularization.\(^6-10\) There are many reports of intravitreal bevacizumab (IVB) being well-tolerated and showing promising results in the treatment of PDR.\(^8-10\)

In this article, the recent studies on the use of IVB injection before, during and after vitrectomy for advanced PDR are reviewed.

Methods
A literature search of all English articles from the Medline and Scopus databases were performed using the keywords “vitrectomy”, “proliferative diabetic retinopathy”, "Anti-Vascular Endothelial Growth Factor", "bevacizumab", and "Avastin". Original articles, letters, and case reports, from the January 2005 to May 2010 were reviewed. Given the expectation that relevant studies would be quite small, no restrictions were placed on the level of evidence required for inclusion.

Results

Preoperative intravitreal bevacizumab
Nineteen studies have reported the outcomes of IVB injection before vitrectomy for PDR (Table 1).\(^11-29\) Among these, 13 prospective and 4 retrospective studies were identified. Sixteen studies reported different intraoperative variables for surgical facility including intraoperative hemorrhage, endodiathermy use, and surgical time, all of them emphasizing facilitation of the surgery after IVB injection.

Eight prospective studies randomized patients to receive IVB or undergo direct surgery without pretreatment.\(^13,14,20,22,24,25,28,29\) Only one study reported enough data about randomization, blinding, statistical analysis and follow-up.\(^25\) All other studies were defective in presenting one or more of the above mentioned quality assessment factors. All studies including one which was specifically designed to measure the red blood cell count during surgery showed a lower rate of intraoperative bleeding. Four study showed a lower rate for endodiathermy use during surgery, however, one study reported similar rates between the two groups despite lower incidence of intraoperative hemorrhage.\(^25\) Six studies reported lower surgical time in the IVB pretreated group and one study didn’t find significant difference between the two groups.\(^22\) One study showed higher rate of subretinal hemorrhage during operation on IVB pretreated eyes.\(^22\) Retinal reattachment rate was better in IVB group in one study and similar between the 2 groups in 2 other studies. Two studies reported that the need for silicone oil tamponade was less in IVB pretreated eyes; however, the rates were similar in 4 other studies. Six studies reported better visual outcomes in IVB group and one study showed similar visual results between the two groups.\(^24\) Six studies among those that reported the rate of postoperative vitreous hemorrhage showed a lower rate in the pretreated group. Two studies, however, reported similar vitreous hemorrhage rates between the two groups.\(^21,23\) Two studies showed shorter vitreous clear up time for the pretreated eyes.\(^16,22\)

IVB was administered between 1 to 30 days before surgery. Although some studies didn’t report any complication attributable to IVB injection, three studies reported development or progression of tractional retinal detachment (TRD) after injections.\(^15,21,22\) In a retrospective series, Arevalo et al\(^15\) reported that 5.2% of eyes developed or had progression of TRD following IVB injection.
Table 1. Intravitreal injection of bevacizumab before vitrectomy for proliferative diabetic retinopathy

<table>
<thead>
<tr>
<th>Author</th>
<th>Design</th>
<th>Indication</th>
<th>Number of eyes studied</th>
<th>Intervention</th>
<th>Interval between injection and operation (days)</th>
<th>Intraoperative findings</th>
<th>Follow up</th>
<th>Visual outcome</th>
<th>Anatomical outcome</th>
<th>Complication after IVB</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen and Park</td>
<td>Case report</td>
<td>TRD</td>
<td>1</td>
<td>IVB</td>
<td>7</td>
<td>Minimal bleeding</td>
<td>1 month</td>
<td>Improved</td>
<td>Attached retina</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Ishikawa et al</td>
<td>Prospective Case series</td>
<td>Severe PDR</td>
<td>8</td>
<td>IVB</td>
<td>3-30</td>
<td>Minimal bleeding</td>
<td>Not reported</td>
<td>Improved in 7 eyes</td>
<td>Attached retina in all eyes</td>
<td>Strong fibrosis in 2 eyes</td>
<td></td>
</tr>
<tr>
<td>Rizzo et al</td>
<td>Prospective randomized trial</td>
<td>TRD</td>
<td>IVB group: 11 eyes No IVB: 11 eyes</td>
<td>5-7</td>
<td>Shorter operation time Less bleeding Less endodiathermy in IVB group</td>
<td>6 months Better in IVB group</td>
<td>Better in IVB group</td>
<td>One reoperation in each group Less postop vitreous hemorrhage in IVB group</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modarres et al</td>
<td>Prospective randomized trial</td>
<td>TRD</td>
<td>IVB group: 22 eyes No IVB: 18 eyes</td>
<td>3-5</td>
<td>Shorter operation time Less bleeding Less endodiathermy in IVB group</td>
<td>Mean: 7 months Better in IVB group</td>
<td></td>
<td></td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arevalo et al</td>
<td>Retrospective case series</td>
<td>TRD</td>
<td>IVB</td>
<td>3-31</td>
<td>NA</td>
<td>NA</td>
<td>All operated eyes improved</td>
<td>See comment</td>
<td></td>
<td></td>
<td>Designed to only report TRD development or progression after IVB</td>
</tr>
<tr>
<td>Yang et al</td>
<td>Prospective case series with retrospective control</td>
<td>Severe FVP</td>
<td>IVB group: 16 eyes No IVB: 24 eyes</td>
<td>7</td>
<td>Less bleeding in IVB group Similar surgical time</td>
<td>6 months Improved in 14, stable in one, decreased in 3</td>
<td>Similar outcome Retina attached in all eyes Less vitreous clear up time in IVB group</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeoh et al</td>
<td>Prospective case series</td>
<td>TRD with INV</td>
<td>18</td>
<td>IVB</td>
<td>6-14</td>
<td>Minimal endodiathermy</td>
<td>6 months Improved in 14, stable in one, decreased in 3</td>
<td>38% postoperative vitreous hemorrhage</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeung et al</td>
<td>Retrospective controlled case series</td>
<td>TRD</td>
<td>IVB group: 28 eyes No IVB: 40 eyes</td>
<td>1-23</td>
<td>NA</td>
<td>1 month Better in IVB group</td>
<td>Better in IVB group Less early postoperative vitreous hemorrhage in IVB injected eyes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romano et al</td>
<td>Prospective case series</td>
<td>VH</td>
<td>IVB</td>
<td>4-7</td>
<td>Minimal bleeding</td>
<td>6 months Improved in 91%</td>
<td>Attached in 97%</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Authors</td>
<td>Study Type</td>
<td>Treatment</td>
<td>Clinical Setting</td>
<td>Sample Size</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oshima et al(21)</td>
<td>Retrospective controlled case series</td>
<td>TRD TRRD</td>
<td>TRRD IVB+MIVS group: 38 eyes No IVB+ 20 gauge vitrectomy: 33 eyes</td>
<td>61</td>
<td>2-30 Shorter operation time Less bleeding in IVB group At least 6 months Similar between 2 groups Progression of TRD in 18%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeh et al(22)</td>
<td>Prospective randomized trial</td>
<td>Active PDR with hemorrhage</td>
<td>IVB group: 20 eyes No IVB: 21 eyes</td>
<td>41</td>
<td>7-9 Less bleeding More subretinal hemorrhage in IVB group At least 6 months Better in IVB group Less postop hemorrhage, less vitreous cleanup time Progression of TRD in one eye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lo et al(23)</td>
<td>Retrospective controlled case series</td>
<td>VH TRD TRRD</td>
<td>IVB group: 33 eyes No IVB: 104 eyes</td>
<td>137</td>
<td>1-27 NA At least 6 weeks Similar between 2 groups Similar between 2 groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>di Lauro et al(28)</td>
<td>Prospective randomized trial</td>
<td>TRD VH</td>
<td>TRD VH+IVB</td>
<td>IVB group: 15 eyes No IVB: 15 eyes</td>
<td>72</td>
<td>5-7 Shorter operation time Less bleeding Less endodiathermy in IVB group At least 7 months Similar between 2 groups Less postop hemorrhage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmadieh et al(25)</td>
<td>Prospective randomized trial</td>
<td>TRD VH</td>
<td>Active progression of PDR</td>
<td>IVB group: 35 eyes No IVB: 33 eyes</td>
<td>68</td>
<td>7 Less bleeding in IVB group Similar endodiathermy 1 month Better in IVB group Less postop hemorrhage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gandhi et al(26)</td>
<td>Case report</td>
<td>Severe PDR Case report</td>
<td>IVB</td>
<td>14</td>
<td>Minimal bleeding 3 months Improved Retina attached Macular hole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hattori et al(27)</td>
<td>Prospective controlled case series</td>
<td>TRD VH</td>
<td>VH</td>
<td>IVB group: 12 eyes No IVB: 40 eyes</td>
<td>52</td>
<td>3 Less endodiathermy In IVB group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>di Lauro et al(28)</td>
<td>Prospective randomized trial</td>
<td>TRD VH</td>
<td>VH</td>
<td>IVB group: 48 eyes No IVB: 24 eyes</td>
<td>72</td>
<td>7 or 20 Shorter operation time Less bleeding Less endodiathermy Less silicone tamponade in IVG group 6 months Better in IVB group Less postop hemorrhage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hernández-Da Mota, and Nuñez-Solorio(29)</td>
<td>Prospective randomized trial</td>
<td>TRD</td>
<td>VH</td>
<td>IVB group: 20 eyes No IVB: 20 eyes</td>
<td>40</td>
<td>2 Shorter operation time Less bleeding in IVB group 6 months Better in IVB group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- IVB: Intravitreal bevacizumab
- PDR: Proliferative diabetic retinopathy
- TRD: Tractional retinal detachment
- TRRD: Tractional rhegmatogenous retinal detachment
- VH: Vitreous hemorrhage
Time from injection to TRD was a mean of 13 days (range 3-31 days) and 9 out of 11 (81.8%) TRDs developed or progressed 5 days or more after the injection. Oshima et al21 identified preoperative ring-shaped fibrovascular membrane formation and absence of previous panretinal photocoagulation as the only factors statistically correlated with rapid progression of TRD. Although they didn’t find the time interval between injection and operation as a risk factor for TRD progression, based on the Arevalo’s finding, other authors suggest that shorter interval is safer.14,15 The final mean visual acuity (VA) in eyes with progression of the preexisting TRD was worse compared with eyes without this complication.15 Gandhi et al26 reported development of a full-thickness macular hole after IVB injection.

Hattori et al27 showed that lower doses of IVB (as low as 0.16 mg) were as effective as the standard dose (1.25 mg) in reducing vitreous VEGF concentrations and also decreasing intraoperative bleeding.

Intraoperative intravitreal bevacizumab

In a prospective case series, Romano et al30 evaluated the recurrence rate of vitreous hemorrhage in 30 eyes that underwent pars plana vitrectomy and IVB injection at the end of vitrectomy. The percentage of severe recurrent VH with no fundus details (grade 3) was 7%, 13%, 27%, and 30%, respectively, at 7 days and 1-, 3-, and 6-month follow-up. They concluded that IVB injection at the end of surgery cannot prevent rebleeding in eyes undergoing pars plana vitrectomy for treatment of diabetic vitreous hemorrhage.

Lee et al31 reported a case of multiple, extensive panretinal hemorrhages 7 days following pars plana vitrectomy, phacoemulsification with intraocular lens implantation, endolaser photocoagulation and intravitreal injection of 1.25 mg bevacizumab at the end of surgery. Nine months after surgery, retinal hemorrhages were resolved.

In a retrospective comparative study, Park et al32 evaluated the clinical outcome and complications of IVB versus intravitreal triamcinolone acetonide (IVT) injections at the end of vitrectomy in 156 eyes with diabetic vitreous hemorrhage with or without TRD. The rate of early postoperative vitreous hemorrhage was significantly lower in the IVB (12.1%) and IVT group (9.1%) than the control group (36.8%, P=0.002 and 0.006, respectively). No significant difference was found in the occurrence of the late vitreous hemorrhage and the reoperation rate was similar between the 3 groups.

Postoperative intravitreal bevacizumab

Five studies reported the use of IVB for complications occurred after vitrectomy for PDR.

Ruiz-Moreno et al33 injected IVB to treat recurrent postvitrectomy diabetic vitreous hemorrhages in 4 eyes. In these eyes, two or more episodes of vitreous hemorrhage occurred which did not clear despite two vitreous lavage procedure and more than 2 months of follow-up. No changes in vitreous hemorrhage were observed after a single injection, however, all were cleared completely after 2 or 3 injections. Yeh et al34 injected IVB in 20 eyes with postoperative recurrent vitreous hemorrhage after primary diabetic vitrectomy. Repeated injections were given after 2-3 weeks in case of no obvious blood reabsorption and 18 eyes with similar condition but no IVB injections were served as controls. Vitreous clear up time after the first recurrent vitreous hemorrhage was 6.5±1.5 weeks with 2.2±0.8 injections in the study group, and 6.4±1.3 weeks in control group, however, the rate of reoperation for vitreous hemorrhage was significantly higher in the control group (0/20 versus 8/18). Liu et al35 injected the IVB in 8 eyes with postoperative vitreous hemorrhage after vitrectomy for PDR. Although 4 (50%) eyes had clearance of vitreous hemorrhage, 3 eyes developed ghost cell glaucoma within 1 week after intravitreal injection of bevacizumab. They concluded that caution should be exercised when administering an intravitreal injection of bevacizumab for a postoperative vitreous hemorrhage after vitrectomy for PDR.

Yanyali et al36 retrospectively reviewed the effect of IVB for persistent diabetic macular edema (DME) in 11 eyes of 10 patients despite prior vitrectomy with internal limiting membrane removal. All eyes had received three intravitreal injections of bevacizumab 1.25 mg/0.05 ml monthly. They didn’t find significant changes in VA and foveal thickness in 3 and 6 months.
Falavarjani et al37 evaluated the effect of intrasilicone injection of bevacizumab for the treatment of 5 eyes with neovascular glaucoma which occurred after vitrectomy for advanced PDR. The iris neovascularization regressed in all eyes and intraocular pressure was controlled within 7 days. In one eye, neovascular glaucoma recurred after 3 months and was successfully treated with reinjection.

Conclusion

Several articles indicate facilitation of surgery after IVB injection. This is mainly related to the decreased intraoperative bleeding which leads to less exchange of instruments and shorter operative time. Also, IVB pretreatment may decrease the rate of postoperative hemorrhage and shorten the resorption time when it occurs.

Preoperative IVB injection may be associated with complications, the most notable being occurrence or progression of TRD in eyes with significant glial-vascular proliferation. This may be avoided by decreasing the interval between injection and vitrectomy (maybe within 1-5 days). Also, caution should be exercised when injecting IVB in eyes with a florid retinopathy with a predominance of plethoric neovascular channels over the fibrous component, ring-shaped fibrovascular membrane formation and absence of previous panretinal photocoagulation.

In cases with recurrent postoperative vitreous hemorrhage IVB injection may help to stabilize the eye and prevent further hemorrhage. In severely ischemic eyes in which iris neovascularization and neovascular glaucoma develop after vitrectomy, complete endolaser photocoagulation and silicone tamponade, intrasilicone injection seems to be the only treatment option that has resulted in regression of iris neovascularization and neovascular glaucoma. This treatment has also been successful in recurrent episodes of neovascularization.

To be able to make a proper recommendation for a therapy, the level of evidence should be assessed. Eleven studies in this article were case reports and prospective and retrospective case series, which are classified as very low and low quality studies considering their limitations.38 Of the 8 prospective randomized trials evaluated, one study25 had higher quality than the others, however, none may be classified as high quality study based on their limitations in study design and/or conduct according to the reported data. Considering that no study showed significant negative effect of IVB injection in properly selected eyes, based on the present evidence levels, preoperative IVB injection is probably a useful adjunct to diabetic vitrectomy.

References

